

Water Technologies & Solutions fact sheet

Hypure* AF

resin bonded filter cartridge

The Hypure AF filter (Figure 1) is a resin- bonded filter cartridge suitable for a wide range of applications. Hypure utilizes phenolic impregnated acrylic and polyester fibers for efficiency and long life. Uses for Hypure include adhesives, coatings, inks, and many more applications for both aqueous and solvent based fluids.

features and benefits

- High dirt holding capacity
- Wide range of micron retention
- Faster flow rates
- High efficiency
- Less change-outs
- Consistent quality

applications

- Printing inks
- Water
- Hot, non-aqueous fluids
- Adhesives
- Antifreeze
- Insecticides
- Photo resists
- Solvents
- Paints and varnishes
- Thinners
- Fuels and Lubricating oils
- Coolants
- Coatings

Figure 1: Hypure AF filters

general properties

Tables 1, 2, 3, and 4 provide information on dimensions and flow performance.

Table 1: Materials of Construction

Media	Phenolic impregnated acrylic and polyester fibers
Adapters	Nylon, Polypropylene

 $Find a \ contact \ near \ you \ by \ visiting \ \underline{www.suezwatertechnologies.com} \ and \ clicking \ on \ "Contact \ Us".$

^{*} Trademark of SUEZ; may be registered in one or more countries. 2017 © Copyright SUEZ. All rights reserved.

Table 2: Nominal Dimensions

Outside Diameter	2 9/16" (65 mm)			
Inside Diameter	1 1/8" (28.6 mm)			
Available pore sizes	2, 5, 10, 15, 25, 50, 75, 100, 125, 150 μm			
Available lengths	9 3/4" (24.8 cm) 10" (25.4 cm) 19 1/2" (49.5 m) 20" (50.8 cm)	29 ¼" (74.3 cm) 30" (76.2 cm) 39" (99.1 cm) 40" (101 cm)		

Table 3: Maximum Operational Limits

Temperature	250°F (121°C)
Flow rate	5 gpm per 10 in. length or 18.9 lpm per 254 mm length
Forward pressure drops	150 psid (10 bar) @ 70°F (21°C) 125 psid (8.6 bar) @ 100°F (38°C) 90 psid (6.2 bar) @ 150°F (65°C) 65 psid (4.5 bar) @ 180°F (82°C) 25 psid (1.7 bar) @ 250°F (121°C)

Recommended Change
Out pressure drop

50 psi (3.5 bar)

flow factors

Rating (µm)	Flow Factors	
2	0.08	
5	0.04	
10	0.02	
25	0.012	
50	0.01	
75	0.006	
125	0.0013	
150	0.001	

length factor

- 1. Clean ΔP is PSI differential at start
- 2. Viscosity is centipoise
- 3. Flow Factor is $\Delta P/GPM$ at 1 cps for 10 in. (single)

pressure differential calculation

Clean
$$\Delta P$$
 (psid)=
$$\frac{\text{Flow rate (gpm) x Viscosity (cP) x Flow Factor}}{10 \text{in equivalent (TIE)}}$$

ordering information

Туре	Nominal Micron Rating (µm)	Length, inch (cm)	End #1 Adapter	End #2 Adapter	Elastomer Material
HAF	02 = 2	9 3/4 (24.8)	E = 222 O-ring	S = Solid End	0-Rings
	05 = 5	10 (25.4)	L = Extended	X = Plain End (no	S= Silicone
	10 = 10	191/2 (49.5)	Core	gasket)	V = Viton ¹
	15 = 15	20 (50.8)	X = Standard		B = Buna
	25 = 25	291/4 (74.3)	Plain End		
	50 = 50	30 (76.2)	(no gasket)		'Viton is a registered trademark of Dupont
	75 = 75	39 (99.1)			
	100 = 100	40 (101.6)			
	125 = 125				
	150 = 150				

Adapters: E (222)- Nylon, L (Extended Core) - Polypropylene

All filters – 15 per case.

Page 2 FS1641EN.docx